Northwestern McCORMICK SCHOOL OF ENGINEERING

Surfaces & Interfaces in Quantum Materials

Formation of

using windowless

liquid-cell TEM

Dravid Research Group Atomic and Nanoscale Phenomena in Advanced Materials

Magnetic Nanostructures & MNS-Soft Interfaces Dr. Vikas Nandwana, Cesar Villa, Chamille Lescott, Stephanie Ribet, Dr. Sonali Dhindwal, Eric Roth, Dr. Reiner Bleher Collaborator: Profs E. Scott, T. Meade, C. Mirkin

Analytical microscopy on polymer-MNS composites: EDS mapping confirms association of Sulfur-based polymer & MNS

Materials for Energy & the Environment

Environmental Remediation

Dr. Vikas Nandwana, Stephanie Ribet, Benjamin Shindel, Yash More, Caroline Harms Collaborators: A. Packman, W. Dichtel, O. Farha

The OHM sponge (oleophilic, hydrophobic, magnetic), a novel nanocomposite material developed by our group, can separate oil and water for **oil spill cleanup**. This platform technology can be used to address a multitude of other environmental problems, such as **nutrient recovery** and **heavy metal remediation**, with potential in many related areas.

Multimodal characterization of the sponge nanocomposites can provide insight into soft/hard interfaces, adsorption mechanisms, hydrophobicity, and hierarchical pores.

Figures showing the versatility of the smart sponge, as well as an adsorption isotherm for phosphate remediation.

Soft Microscopy

Kelly Parker, Chamille Lescott, Eric Roth, Dr. Reiner Bleher, Dr. Roberto dos Reis, Dr. Sonali Dhindwal Collaborators: Profs M. Mrksich, C. Mirkin, L. Drummy, M. Jewett, R. Leapman, O. Farha, W. Dichtel

SEM/STEM imaging of tetracutinase protein construct. Negative staining and low-voltage EM enhance contrast and stabilize BF STEM, 20 KV — macromolecules. a) Traditional STEM at 200 kV, b-f) STEM 📕 from 30 kV – 5 kV in an SEM with STEM detection, very high-throughput compared to traditional EM. Scale bars 50 nm and 10 nm (insert)

STEM image simulations demonstrate improved contrast but reduced resolution with lower electron energy.

vpd.ms.northwestern.edu