Dravid Research Group

Atomic and Nanoscale Phenomena in Advanced Materials

Materials for the Environment

Hybrid Microscopy

Quantum and Energy Materials

Sponge Membranes for Water Remediation

We develop sponge membranes to leverage novel nanomaterials for environmental challenges, such as oil spill remediation (OMNIA sponge), rainwater recovery (PEARL membrane), and other applications detailed below.

Complex Nanoparticle Systems and Automated Electron Microscopy for High-Throughput Materials Discovery

Cacelin Wah, Alij Kukalooglu

We automate EM data acquisition and analysis with AI for high-throughput materials discovery on nanomaterials, megabytes using 40-STEM, EDS, and TED, and use advanced EM techniques to study the structures and properties of complex multiphase nanomaterials.

Hydrogen in Energy and Information Systems (HEISs)

We address fundamental questions of hydrogen incorporation and transport in solid-state materials for high-performance protonic devices that achieve targeted electrochemical transformations in energy applications and information processing.

Carbon Capture

Functionalized, positively-charged sponges are able to effectively remove plastic contaminants from solution.

Advanced Techniques in Electron Microscopy

Yulan Liu, Mike Binczewski, Alfred Yen, Dr. Roberto dos Reis

Collaborators: Prof. S. Halle, M. Kanatzidis, V. Sargent, NUANCE, Dr. S. Ribe, Dr. C. Ophus

In situ quantitative characterization of microstructure evolution in thermoelectrics

Bandgap and Structure Mapping in Solar Cells

Patricia Meza, Dr. Roberto dos Reis

Collaborators: Prof. M. Kanatzidis

We investigate inverse carbon polycrystalline films to probe the effect of nanometer ordering on properties like bandgap to help synthesize better solar cells, using STEM, EELS, and HAADF.

Hierarchically Architecture Thermoelectrics

Yulan Liu, Mike Binczewski, M. Kanatzidis, C. Wollerlin, O. Farha, S. Snyder

We perform STEM analyses to elucidate structure-property relationships in thermoelectric materials. We further optimize the performance via a hierarchically microstructural architecture.

Dravid Research Group

NUANCE

Atomic and Nanoscale Characterization Experimental Center

Department of Materials Science & Engineering

vdp.ms.northwestern.edu