Skip to main content

Novel and Emerging Microscopy: Tools, Techniques & Analysis

(Supported by NSF-MRI, AFOSR, W.M. Keck Foundation, Intel, SRC, Hitachi, ANL, State of Illinois)

Research 6Microscopy has come a long way since the time of Leeuwenhoek and Hooke, who developed the early optical microscopy. With the increasing complexity of materials systems, it is essential to continue to develop microscopy techniques and analysis in the broadest sense. This includes not only real-space imaging, spectroscopy and reciprocal-space diffraction, but also localized measurements of their evolution, properties and phenomena.

We are particularly active in this area by implementing and developing a broad suite of characterization techniques based on electron, photon (light and synchrotron), ion and scanning probe techniques.

We make extensive use of the NUANCE center capabilities and develop innovative techniques for exploring the “inner” space.

We are also active in developing in-situ and ex-situ characterization techniques based on electron microscopy, diffraction, spectroscopy, as well as scanning probe and synchrotron x-ray scattering.  

Representative Publications:

  1. Xin Wang, Reiner Bleher, Mary E. Brown, Joe G. N. Garcia, Steven M. Dudek, Gajendra S. Shekhawat, & Vinayak P. Dravid. Nano-Biomechanical Study of Spatio-Temporal Cytoskeleton Rearrangements that Determine Subcellular Mechanical Properties and Endothelial Permeability. (2015). Scientific Reports, 5. 
  2. Emily L. Que, Reiner Bleher, Francesca E. Duncan, Betty Y. Kong, Sophie C. Gleber, Stefan Vogt, Si Chen, Seth A. Garwin, Amanda R. Bayer, Vinayak P. Dravid, Teresa K. Woodruff, & Thomas V. O'Halloran. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks. (2015). Nature Chemistry, 7(2), 130-139. 
  3. Strasser, S. D.; Shekhawat, G.; Rogers, J. D.; Dravid, V. P.; Taflove, A.; Backman, V., Near-field penetrating optical microscopy: a live cell nanoscale refractive index measurement technique for quantification of internal macromolecular density. Opt Lett 2012, 37 (4), 506-508. 
  4. Mustata, G. M.; Shekhawat, G. S.; Lambert, M. P.; Viola, K. L.; Velasco, P. T.; Klein, W. L.; Dravid, V. P., Insights into the mechanism of Alzheimer's beta-amyloid aggregation as a function of concentration by using atomic force microscopy. Appl Phys Lett. 2012, 100 (13).
  5. Pradhan, P.; Damania, D.; Joshi, H. M.; Turzhitsky, V.; Subramanian, H.; Roy, H. K.; Taflove, A.; Dravid, V. P.; Backman, V., Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis. Physical biology 2011, 8 (2), 026012.
  6. Wu, J. S., Kim, A. M., Bleher, R., Myers, B. D., Marvin, R. G., Inada, H., Nakamura, K., Zhang, X. F., Roth, E., Li, S., Woodruff, T. K., O’Halloran, T. V., Dravid, V. P. “Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron”, Ultramicroscopy, 128, 24-31, (2013).
  7. Pradhan, P.; Damania, D.; Joshi, H. M.; Turzhitsky, V.; Subramanian, H.; Roy, H. K.; Taflove, A.; Dravid, V. P.; Backman, V., Quantification of nanoscale density fluctuations using electron microscopy: Light-localization properties of biological cells. Applied Physics Letters 2010, 97 (24).

Links to Other Dravid Group Research Themes:

Spatially & Dimensionally Confined Structures and Assembly
Interfaces and Defect Phenomena in Advanced Materials
Synthesis, Patterning and Microscopy of Nanostructures
“Theranostic” Nanostructures: Combined Biomedical Imaging & Targeted Therapeutics
Integrated Nanosystems for Biochemical Sensing & Diagnostics
Novel Microscopy and Analysis

Back to top